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ABSTRACT

The Foam Optics and Mechanics (FOAM) project will

exploit the microgravity environment to more

accurately measure the rheological and optical
characteristics of wet aqueous foams. Using both

theology and laser light scattering diagnostics, the goal

is to quantify the unusual elastic character of foams in
terms of their underlying microscopic structure and

dynamics. Of particular interest is determining how the
elastic character vanishes, i.e., how the foam "melts"

into a simple viscous liquid, as a function of both

increasing liquid content and increasing shear strain
rate. The unusual elastic character of foams will be

quantified macroscopically by measurement of the
shear stress as a function of shear strain rate and of time

following a step strain. Such data will be analyzed in

terms of a yield stress, shear moduli, and dynamical

time scales. Microscopic information about bubble

packing and rearrangement dynamics, from which the

macroscopic non-Newtonian properties ultimately arise,
will be obtained non-invasively by multiple-light

scattering: diffuse transmission spectroscopy (DTS) and
diffusing wave spectroscopy (DWS), Quantitative

trends with materials parameters, most importantly

average bubble size and liquid content, will be sought
in order to elucidate the fundamental connection

between the microscopic structure and dynamics and

the macroscopic rheology.

INTRODUCTION

Aqueous foams are intrinsically non-equilibrium

systems _,with time, the gas and liquid components
inexorably separate by some combination of coarsening

(gas diffusion from smaller bubbles to larger bubbles),

film rupture, and the gravitational drainage of liquid

from in between gas bubbles. While coarsening is often
slow and film rupture can be eliminated, gravitational

drainage cannot be prevented on Earth since it is not

possible to density match gas and liquid; furthermore,
the rate of drainage increases rapidly with liquid

content. This fundamentally precludes the possibility of

ground-based study of foams near the melting
transition. Prolonged microgravity conditions are

therefore required in order to eliminate drainage for

experimental study of the intrinsic structure, dynamics,
and rheology of foams with liquid content varying up

to, and beyond, the melting transition.

The utility and fascination of foams derive largely from

the surprising fact that they have a solid-like elastic

character, in spite of being mostly gas with a few

percent volume fraction of liquid, but can nevertheless

flow under shear. The physical origin of such unusual

rheology in terms of microscopic structure and

dynamics is poorly understood and remains a subject of
basic scientific interest to physicists, chemists, and

chemical engineers. The proposed flight experiment

promises important new insight into these issues, and
could also have significant consequences for our

understanding of flow in other dense randomly-packed

systems such as emulsions, colloids, suspensions,
slurries, bubbly liquids, and granular materials.

Furthermore, all foam applications are empirically

based and the proposed research may generate valuable

fundamental guidance for the development of materials
with more desirable rheology and stability

characteristics.
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FOAM PROPERTIES

Aqueous foam is a nonequilibrium collection of

polydisperse gas bubbles packed in a smaller amount of

water containing surfactants, or other surface-active
macromolecules. I-3 These preferentially adsorb at the

gas-liquid interfaces and give rise to repulsive forces

that prevent bubble coalescence. The typical bubble

size can range from 10 l.lm to lcm, and their minimum

surface separation distance, i.e., the soap film thickness,
can range from 10 ._ to 1 _tm. The volume fraction of

liquid can be as small as 0.01%, such that the bubbles

are nearly polyhedral, or as large as about 8% on Earth,

such that the bubbles appear slightly spherical. If made

wetter, however, the liquid will rapidly drain under the

influence of gravity; thus, the close-packing limit of

about 35% liquid, where the bubbles are perfectly

spherical, cannot be reached on Earth. The following
photos show the actual bubble-scale structure in two

very different foams. One is a single-surfactant foam
(SDS in water), where the bubble size is 3 mm and

where drainage and the influence of liquid content on

bubble shape are evident. The other is a commercial

shaving foam (Gillette TM Foamy Regular), where the

bubble size is 30 I_m. Note that in spite of differences in

chemistry and size scale, the foams are very" similar

where the liquid contents are equal. As we shall see,

liquid content is the single most important parameter to
vary--but this cannot be done to the extent needed in

the presence of Earth's gravity.

Aqueous foams are continually:evolving systems far

from equilibrium. With time, the gas and liquid portions
inexorably separate by some combination of three basic

mechanisms. First, if the quality or concentration of

surfactants is too low, then adjacent bubbles can

coalesce by rupture of the intervening soap film. This

film-rupture mechanism can be eliminated easily by
suitable choice surfactant and concentration. Second,

the Laplace pressure difference between bubbles of

different sizes causes gas to diffuse through the

intervening soap film from the small to the larger

bubble; thus, large bubbles grow and small bubbles

shrink. This coarsening mechanism cannot be

efiminated, but Can be Slowed by decreasing the surface

tension of the interfaces and the solubility and

diffusivity of the gas. Third, the unavoidably large

density mismatch between gas and surfactant solution

causes the bubbles to rise and the liquid to sink; as this

proceeds, the soap films can become so thin as to

rupture by thermal fluctuations. Gravitational drainage
cannot be eliminated on Earth; however, it can be

slowed by decreasing the bubble size and by increasing

Figure 1. Bubble scale structure

the liquid viscosity and the gas content. Of these

mechanisms, only coarsening represents a behavior
intrinsic to all foams, since it cannot be eliminated even

in principle. By contrast, rupture and drainage serve to

complicate and mask intrinsic behavior and to prevent

wide variation of key structural parameters such as
liquid content.

As a form of matter, foam is neither solid, liquid, nor
vapor--yet it possesses the hallmark mechanical
features of all three forms of matter. Under small

applied shear forces, it can respond elastically, like a

solid. Under large applied shear forces, it can flow and

deform arbitrarily without breaking, like a liquid. Under

pressure or temperature perturbations, it can

proportionally change its volume, like a gas. This

unusual rheological behavior in combination with low
density and high interfacial area is the basis for our

common fascination with everyday foams and for their
utility in a wide variety of applications.

FOAM APPLICATIONS

Liquid-based foams are familiar from everyday life in

the form of detergents, foods, and cosmetics of all sorts.

They also find use in a wide array of unique

applications like firefighting, isolating toxic materials,

and spreading/delivering chemicals. They are also used

in physical and chemical separations, most notably in

the froth-flotation method of refining ores. In the

petrochemical industry they are used in a variety of

ways to enhance oil recovery. And liquid-based foams

are also of course the precursors to all synthetic cellular
solids, whether polymer or metal. Foams also tend to
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arisein unwantedcircumstanceswhenevermulti-
componentliquidsareprocessed.Thisis thebaneof
pulpandpaper,paintandcoating,textile,leather,
adhesives,andotherindustries.Thiseffectis also
familiarfromtheuglyyellow/brownfoamstelltaleof
pollutednaturalwaters.

Whethera special-purposematerialor a unwanted
byproduct,inall casesit iscrucialto controlboththe
mechanicaland stability propertiesof foams.
Unfortunately,ourcurrentfundamentalunderstanding
issolimitedthatthesetasksarestillaccomplishedby
trial-and-erroronacase-by-casebasis.

DIAGNOSTICS

In this section we describe and illustrate the major

diagnostics. The schematic geometry for the proposed

experiment is shown in Figure 2.

Video Microscopy

The most straightforward diagnostic of foam structure

is to estimate the bubble size distribution, p(d), from
still-frames of bubbles at the surface where a bulk foam

is pressed against an optically clear wall. This is also

important for verifying that the sample is homogeneous,

without any empty pockets filled with gas. From real-

time video recordings, the sudden bubble-scale
rearrangements can be directly observed near the

surface and analyzed in terms of the key time scale, 'ra,
the event duration.

Diffuse Transmission Spectroscopy

In this diffusing-light spectroscopy, the probability Ta

for incident photons to be diffusely transmitted is
estimated from measuring the time-averaged

transmitted intensity, <I>, and normalizing by the

intensity Io of the incident light: Ta=<I>/Io. From
ancillary knowledge/measurement of the extrapolation

length ratio z_ and slab thickness L, the transport-mean

correlator t[_ torque, position

_APD conebk
_ _ 21>video

I I

I,,I plate
laser I1 loading

port

Figure 2. Schematic of the FOAM sample cell for
simultaneous optical and rheological measurements.

free path 1" of the photons is then extracted using the

diffusion-theory prediction Ta=(l+z_)/(L/I*+2_). This

provides a second measure of the foam structure since
l* is approximately equal to the bubble diameter

divided by the square-root of the liquid fraction, 4 as

shown in Figure 3.

In the microgravity experiments, the liquid fraction

e will be known, so the value of l* will give the average
bubble size in the bulk foam. Furthermore, the value of

l* is also a crucial ingredient needed for analysis of

DWS data, discussed next.

Diffusing-Wave Spectroscopy

In this spectroscopy, temporal fluctuations in the

diffusely transmitted light are characterized by real-

time computation of the intensity autocorrelation
function, g2(x)=<I(0)I('r)>/<I> 2, using photon-counting

and a digital correlator. This is similar to traditional

dynamic light scattering, or photon-correlation

spectroscopy, except that the detected photons have
been multiply scattered, rather than singly by a selected

scattering wavevector. The normalized field correlation

function g_('r)=<E(O)E*(x)>/<EE*> is then extracted
using the Siegert relation, g2('t)=l +Bg_(x)2; this, in turn,

is analyzed in terms of the nature and time scales of the

bubble motion using the theory of DWS. For example,
discrete rearrangements and uniform shear give

contributions to g_('t) that decay roughly exponentially
in (L/I*) 2 times x/'ro and (x/'r_) 2, respectively, where % is

set by the size and frequency of the discrete

rearrangements, and

r;' =_, kt" /,_rf6 (1)

f ........ ! ......

• homemade AOS foams

41. expanded Gillette Foamy

# o compressed Gilletle Foamy

• • ....... Mie for D=1001un gas bubbles

._. /

.01 0.1
E

Figure 3. Photon mean free path I*, normalized by
bubble diameter, as a function of liquid content.
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is set by the strainrate of the homogeneous
deformation.Thesefeaturescanbeseenin theDWS
datatakenforafoaminourhomemadeCouettecellata
seriesofincreasingstrainrates,showninFigure4.

Note that digitalcorrelatorscomputethe average
intensity as well as its temporal autocorrelation, and

that therefore DWS measurements automatically yield
DTS. The only extra requirement for doing DTS with a

DWS set-up is to determine the normalization, which

can be done by calibration or comparison with a known
sample.

Stress Relaxation During Steady Shear

linearity by varying A_" and to be repeated for a range
of rotation speeds, including zero where it reduces to
the traditional shear relaxation modulus.

Plots of o(_) and q=o(};')/};' vs. _', and of G(t, _')
vs. t and _, serve to characterize the shear rheology of

the foam without further analysis. Of course, however,

other quantities may be extracted in the context of

models such as the shear modulus, yield stress, yield
strain, plastic viscosity, spectrum of relaxation times,

etc. Example data are shown in Figure 6, obtained with
a Paar-Physica UDS-200 rheometer. 6

All rheological diagnostics reduce to measurements of 108

torque and angular position of a rotating tool. Our _,
geometry will be cone-plate, In this rheological _ 106

diagnostic, the first task is to measure the average shear ._

stress o(};') at the given angular rotation speed _ or _ 10 4

strain rate _'. This gives the apparent viscosity of the "_
foam, which is always shear-thinning but with a strange =
functional form, 5 as shown in Figure 5. _ 100

The next task is to superimpose a small amplitude step-
strain A T on top of the steady rotation and to measure

the transient increase in stress o(t) and its relaxation

back to the steady-state value c(_'); in other words, to

measure the generalized shear relaxation modulus
G(t, _)=[_(t)-c_(_')]/A'?'. This is to be checked for

"_. Foamy

=0.1 sec '"Q. •

Cry = 150 dyne/cm 2

Solution
i

a_-- _ 8-. -¢_ ,it- I,_a-li.,ILI

10 .4 10 .3 0.01 0.1 1 10 10 2 10 3

strain rate (secq)

Figure 5. Shear-thinning of foam.

, . , , | . , . , i , , , . i . , . ,

\o.oo s-l\
i=o.02s '\

0.01 ...................
0 0.005 0.01 0.015

"t (sec)

Figure 4. Microscopic dynamics of the foam is

probed by DWS during steady shear.
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Figure 6. Stress relaxation in foam following

a step-strain during steady shear.
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Figure 7. Stress relaxation for various shear rates.

From this data we extract both the viscosity and the

shear-relaxation modulus. This gives stress vs. strain
rate data shown earlier, and as well as the following

picture of how the relaxation modulus decreases, and

the foam becomes progressively more liquid-like, with
increasing strain rate, 6as shown in Figure 7.

The melting transition as a function of increasing liquid

content is expected to be rather different. According to
simulation, the relaxation time actually increases while

the static shear modulus goes to zero.

NEED FOR MICROGRAVITY

Since the rate of drainage in foams increases with liquid
content, 7'8 the volume fraction of liquid accessible on

Earth is restricted to a very narrow range, below about
10%, where the foam is still relatively dry with nearly

polyhedral bubbles. Therefore the dramatic changes in

foam structure, bubble dynamics, coarsening, and
rheology that are expected on approach to the melting

point at about 36% liquid cannot be studied by ground-
based experiments. 9 Furthermore, the intrinsically large

mass density difference between gas and liquid

precludes broader variation of liquid content simply by

clever choice of material, as in the density matching of

colloids or binary-liquid mixtures.

One possibility to extend the range of accessible
volume fractions on Earth is to establish a steady state

where the liquid which drains out the bottom is

replaced by a continuous rain of liquid from above.
However, this is not satisfactory for several reasons:

(a) The liquid preferentially travels down through

Plateau borders such that the bubble shapes are

different from what they would be in zero gravity but

with the same average liquid content; this alters both

coarsening and rheology. (b) We find that the
downward flow of liquid can induce stratified

convective rolls as well as size segregation of bubbles

in polydisperse foams;/° this alters both coarsening and

rheology. (c) This "forced/steady-drainage" could be

implemented in a Couette rheology geometry, but not in

the cone-plate system.

Another possibility to extend the range of accessible
volume fractions on Earth is to tumble the entire system

or otherwise provide continuous mixing. However, this
is not satisfactory for several reasons. (a) Same as

reason (a) above. (b) Uniaxial spinning may merely

replace vertical gravitational drainage with radial

centrifugal drainage. Under more complex tumbling or

stirring there is no guarantee that the volume fraction
would be homogeneous throughout the system unless

there is also rapid convection of bubbles; this would

alter coarsening and rheoiogy. (c) Even with rapid

convection, our experience is that the system still
becomes inhomogeneous, especially at high liquid

content. Perhaps the single most important limitation is

that: (d) Steady tumbling or stirring cannot be

implemented simultaneously with rheologicai
diagnostics. Nevertheless, it may offer some overlap

with low-g DWS data for fairly dry foams, in the

5 to 20% liquid content range.

In short, progress can be made on Earth but only in

carrying out the optical and mechanical diagnostics for

relatively dry foams far from the melting point.
However, even then, drainage is not absent and this

(a) raises ambiguities as to its relevance and

(b) prevents the long duration runs needed to obtain
reproducible bubble-size distributions and to fully

characterize coarsening.

The minimum time required for the structure of a

freshly prepared foam to coarsen into a reproducible
distribution of bubbles sizes ranges from tens of
minutes to a few hours. After that, several hours to

several days are needed to allow the coarsening process

to proceed appreciably. Furthermore, the DWS and

rheology diagnostics require tens of minutes at each
point in the foam's lifetime. Thus, only DTS and video

microscopy could be usefully performed in drop towers,

aircraft, or sounding rockets; however, even then, the
results would be ambiguous because the bubble size

distribution would not be reproducible.

We thus make the following conclusions:

(a) Microgravity conditions are the only viable

alternative to eliminate drainage and hence to enable

NASA/TM--2002-211195 5



studyofthedramaticchangesinfoamstructure,bubble
dynamics,coarsening,andrheologythatoccurasthe
liquidcontentis increasedtowardthemeltingpoint.
(b)Experimentdurationsof several hours to several

are needed in order to obtain reproducible self-

similar bubble size distributions via the coarsening
process, to observe appreciable self-similar coarsening

of the foam, and in order to perform DWS and rheology

diagnostics. (c) These requirements for prolonged

microgravity conditions can be met only by
accommodation in the International Space Station.

CONCLUSION

Aqueous foams are familiar and interesting materials

with a wide variety of non-obvious uses and

occurrences. However, fundamental understanding is
still lacking of the interrelationships between bubble-

scale structure and dynamics and the unusual

macroscopic stability and rheology. We propose to
make progress in establishing such knowledge via a

coordinated application of newly developed diagnostics

as a systematic function of key parameters. Namely,
diffusing-light spectroscopies plus rheology and video

microscopy vs. foam liquid content and age. This
program has already been demonstrated for dry foams,

where gravitational drainage is negligible. Prolonged

microgravity conditions, however, are crucially needed
to prevent drainage for wet foams and thus permit

observation of dramatic changes in structure, dynamics,

and rheology as the liquid content is increased toward
the melting point.
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